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AIIIInd-PoIIowing a linear theory for the soft ferromapetic elastic materials. we consider the linear
mapetoelastic problem for an infinite body with two coplanar Griftith cracks under the condition of plane
strain. It is uswned that the soft ferromqnetic elastic: solid is a homoaeneous and isotropic: one and is
permeated by a lIIIiform mapetostatic: field normal to the cracks SlII'faces. By the use of Fourier transforms
we reduce the problem to solving two simultaneous triple intell'al equations. These equations are exactly
solved by using finite Hilbert transform techniques. The singular stresses near the crack tip are expressed in
closed elementary forms and the inlluence of the magnetic fields upon the stress-intensity factors is shown
II'IPhically.

I. INTRODUCTION

In recent years, the theory of magnetoelasticity, which is concerned with the interacting effects
of externally applied magnetic field on the elastic deformation of a solid body, has been
developed rapidly because of the possibility of its extensive practical applications in various
branches of science and technology. The interaction of stress, strain in an elastic body and
magnetic fields can occur in a number of ways such as the effect of induced current and
magnetization on the body and so on. Here we consider a soft ferromagnetic elastic solid. The
first attempts of studying the effect of induced magnetization on the solid were made by Moon
and Pao[l] in order to understand the magnetoelastic buckling of a beam-plate under a
transverse magnetic induction. Later Pao and Yeh[2] gave the field equations and boundary
conditions of the linear theory for a soft ferromagnetic elastic solids in a systematic way.
Recently, based on the theory of Pao and Yeh the author has investigated the two and
three-dimensional crack problems [3, 4] for the soft ferromagnetic elastic solid subjected to a
uniform magnetostatic field normal to the cracks surfaces. These are, however, restricted to
two-part mixed boundary value problems which are mathematically easy. Furthermore, their
theory has not been applied to three-part mixed boundary value problems such as two coplanar
Griffith cracks problem. Such problems are also of great practical importance.

In the present paper, we study the linear magnetoelastic problem for the soft ferromagnetic
elastic solid with two coplanar Griffith cracks permeated by a uniform magnetostatic field
normal to the cracks surfaces, which have innumerable applications in the field of fracture
mechanics. By using Fourier transform techniques, the problem is reduced to that of solving
two simultaneous triple integral equations. The two simultaneous triple integral equations are
exactly solved by using finite Hilbert transform techniques. The singular stresses near the crack
tip are then expressed in closed forms and the effect of magnetic fields upon the stress-intensity
factors is shown graphically.

2. STATEMENT OF PROBLEM AND FUNDAMENTAL EQUATIONS

Let two open coplanar Griffith cracks be located in the interior of a homogeneous, isotropic,
linearly elastic, soft ferromagnetic, infinite solid. Consider a rectangular cartesian coordinate
system (x, y, z) such that these cracks are placed on the x-axis from -b to -0 and from 0 to b
as shown in Fig. 1. A uniform magnetic field is applied perpendicularly to the cracks surfaces.
The external magnetic induction Bo is represented by Bo = (0, Bo" 0) = Bot, where Bo is
constant, and e, is a unit vector along y-axis.

For convenience, all magnetic quantities outside the solid will be denoted by the superscript
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Fig. 1. Two coplanar Grillith cracks in a soft ferromagnetic elastic solid.

(e), The solutions for the rigid body state are

BW=Bo,
Bo, = Bo,

HW = BoI/.£o,
Ho, =BoIlLolLf'I

Mf{/=O
Mo, =xBoI/.£olL, (1)

where Ho, and Mo, are the y-components of the magnetic intensity vector He and the
magnetization vector Me. respectively, /.£0::: 411' X 10-1 newton/amper (HIm) is the magnetic
permeabj]jty of the vaccum, ILr is the specific magnetic permeability and X is the magnetic
susceptibility.

We consider small perturbations of the magnetic intensity b::: (h~. h,.O), the magnetic
induction b=(b~. b,. 0) and the magnetization m=(m~, m,. 0). which are characterized by a
small displacement field u= [u~(x. y). u,(x. y). 0)] produced in the solid. and assume that all
perturbations are independent of z. Hence the nontrivial components of the stresses and the
magnetic quantities are [3]

lu =21L [1 ~2" (ux,.. +u",) +u",x ]

lx, =I,,, =IL(II~., +1I,,x) +(BoIlL,)m~

I" ::: 21L [1 ~2". (u",x +11,.,) +II", ] +2(BoIlL,)m, +XB0
211LOIL,2

!.:!1K 1+2~ 2
O'At" = Boh, +2 BoIL, 1L01L,

(2)

(3)

h~ =mx/X,
bx =1L0p"h~.

h, :::m,lx
b, =/.£o1L,h, (4)

where ,_ I~ and I" are the magnetoelastic stresses, O'Mu. O'Mx, and O'At" are the Maxwell
stresses, the Lame constants ..\ and IL are replaced by " and IL with ..\ ::: 21Lv/O- 2,,). " is the
Poisson's ratio, and a comma denotes partial dilferentiation with respect to the coordinate, In
this case the linearized field equations can be also expressed in the following forms;

1'12 1 2xBoh 0
Y IIx +-12 (1I..,x +u,,),x + x., =

- " . ILIL,

V2 1 2xBoh 0
u, +1-2" (1Ix,.x + u,.,)., + ILIL, ,., =

\'2 ::: iJ21ax2+ iJ2/iJy2

hx = 4>.... h,::: ell.,. V24> ::: 0

(5)

(6)

(7)
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where t/J is the magnetic potential. The correspondence mixed boundary conditions, as derived
from [3J, are that at y =0,

t/J(x,O) =0; lxl ~ a, b ~ lxl

b,'~)(x, 0) - b,(x, 0) =0;

41(~)(x, 0) =0;

a </x/<b

a <lxl<b (8)

t,x(x,O) =0; lxl < 00

-i{ B0
2

}.tyy - Boh,(x, 0)+-2-, a < Ixl < b
IL, #LolL,

u,(x, O) =0; Ixl ~ a, b ~ lxl

(9)

3. ANALYSIS

The solutions. of eqns (5H7) for y'" 0 will be of the following forms in terms of the
unknown functions A(a), B(a), a(a) and a~(a),

Ux =~L'" [A(a)-(3 _4v)B~a)+ B(a)y +2(1- 2p){xBoIlLlL,)a(a)] e-«' sin aX da

21'"u, =- {A(a) +B(a)y} e-«' cosax da
'If' 0

21'"t/J =- - aa(a) e-«' cosax da
'If' 0

21'"t/J(~) = - a~(a)shay cosax da.
'If' 0

(10)

(11)

Making use of mixed boundary conditions (8) and (9), we have the two simultaneous triple
integral equations:

L'" a{a(a) -(xBoIlLolL,)A(a)} sinax da = 0; a < Ixj < b

f: a(a) COsaX da =0; lxl ~ a, b ~ lxl (12)

f' a[A(a)+(xBoI21LIL,){1-2v-2(I- v)x}a(a)] cosax da =2: (1- p)P"o; a <Ixl<b

L'" A(a) Cosax da =0; lxl ~ a, b ~ lxl (13)

in which the unknown A(a) is related to B(a) and a(a) as follows:

aA(a) =2(1- p)B(a) -(3 -4p)(xBoI21L1L,)aa(a).

Adopted in the first equation of (13) are the contractions

(14)

(15)

To solve the foregoing set of simultaneous triple integral equations, the method of Lowengrub
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and Srivastava(5) can be used with slight modification. If we make the integral representations
for a(a) and A(a)

lfl>
a(a) = - hW sina~d~

a a

I II>A(a)=- t{1W sina~d~.
a a

(16)

If we now substitute the eqns (16) into the first equation of (12), after some manipulations, we
have

From the first equation of (13), we also have the following integral equation

11> ! 'TTl'.
[t{1U)+{1-2v-2(1- v)x}(XBoI2p.p.r)h(E)]~dE::::2 liD.

a ~ -X P.

(17)

(18)

From the second equations of (12) and (13) and the definitions (16) it is clear that the integral
equation must be solved under the following single-valuedness conditions:

f hWd!=O

f t{1(~)d~=O. (19)

Using the theorem for finite Hilbert transform, we find that the solution to the integral equation
(18) is given by

where C is an arbitrary constant. By substituting t{1(E), which is obtained from the eqns (17) and
(20), into the second condition of (19), we can easily derive

(21)

Here, F =F{'TT/2, (b2- a2)1/2/b} and E =E{'TT/2, (b2- a2)1/2/b} are the complete elliptic integrals
of the first and second kind, respectively. The functions a(a) and A(a) can now be determined
from the relations (16).

By superposing the magnetoelastic stresses tij and the Maxwell stresses CTMij, the complete
stresses tcjj are obtained in the form:

(22)

Considering the behavior of a -+00 in the expressions of stresses, we obtain the terms which will
contribute the singularity of stresses as follows;

(23)
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where

YI = {2~,2 +(1- 211)(Xbc)2}yO

Y2 = {2~,2 +(3 - 411)(Xbc)2}yo
YJ = {2JL,2 +(3 - 411 )(Xbc)2}yO

Yo = 1/[2JL,2 +{2(1 - II) +(5 - 611)X}(Xbc2).

In order to find these stresses in closed forms, we use the polar coordinates defined as

541

(24)

(25)

Po = {(x - a)2+ y2p12,
p" ={(x - b)2 +y2}1/2,

80 = tan-I{y/(x - aH
8b =tan-I{yl(x - bH (26)

and put t/lW, with consideration of its singularity, as follows

(27)

Then the singular parts of I"", 1:." Iyy and (TMxr, (TM1<Y, (TMyy are obtained by using the theorem[6]
on the behavior of Cauchy integral near the ends of the path of integration as follows

I"" - {y. +Y2 cos (8a/2) cos (38J2H sin (80/2) (~:;iI2 + {yJ - Y2 sin (8,,12) sin (38J2)} cos (8,,12) (~:;t12

(28)

11<Y - ~ [sin 8a sin (38012) (~:)iI2 + sin 8b cos (38,,/2) (~)t12]

I" - {y. - Y2 cos (8a/2) cos (380/2)} sin (80/2)(~:;i12+ {Yl + Y2 sin (8,,12) sin (38J2H cos (8bI2) (~:)~12

(TMxr - - 2(1- II)YoXbc{sin (8J2)(~:;i/2+ cos (8,,12) (t:;'12]
(TMJty - 2(1- II)YOXJL,bc2[cos (8012) (~:)i/2 - sin (8,,12) (~:)t12]
(TM" - 2(1- II)YoX(I +JLr)bc2[sin (80/2) (~:;i12 +cos (8,,12) (~;t12]

(29)

where Kilt. and Klllb are the stress-intensity factors at the inner and the outer tips of the crack,
respectively, and are defined by the following equations:

We might also note that when alb =0, the cracks merge into a single one of width 2b. In this
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case, the second equation of (30) reduces to the simple expression

(31 )

obtained by the author [3] for the stress-intensity factor for a single crack. The critical magnetic
induction Boer at which the surfaces of the cracks are unstable is

(32)

which agrees with the result for a single crack!3, 4).
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Fig. 2. Effect of magnetic fields on the stress-intensity factors at the inner tip of the crack with atb.
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Fig. 3. Effect of magnetic fields on the stress-intensity factors at the outer tip of the crack with atb.

4. NUMERICAL RESULTS

To examine the effect of magnetic fields on the stress-intensity factors, the normalized
stress-intensity factors have been calculated for any prescribed values of Poisson's ratio /I and
magnetic susceptibility x. Figure 2 shows the variations of K".,,/P"ob 1/2 at the inner tip of the
crack with alb for be = 0, 0.003, 0.005, /I = 0.25 and X = 10". The same kind of results for
K" 1/,/P"ob 112 at the outer tip of the crack is shown in Fig. 3. The dashed curves obtained for the
case be = 0 coincide with the purely elastic case. The existence of the magnetic field produces
higher stress concentration in the neighborhood of the crack tip. KIllbIP"ob l/2tends to the result
for the single crack by the author[3] as alb -+0 and tends to zero as alb -+ 1. Numerical results
for KII1 ,JP/tob l12 and KIII,,/PIIObll2 show that KlllalP/tobl/2 is always larger than KII IblPllob 112. It
follows from this that the form of the two coplanar Griffith cracks is unstable. The development
of the cracks for monotonous increase of the load PliO starts at points of the inner tips and the
two cracks transform into a single crack of width 2b.
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